Wind Farm Wake Analysis

Summary of Past & Current Work

Jack Kline RAM Associates AWEA Wind Resource Assessment Seminar Las Vegas, NV December 11, 2013

Current Wake Model Implementation

	RAM Associates
Date of implementation	2005
Model Theory	Conservation of Energy
Software Used	Excel VBA
Proprietary Modifications	All Proprietary
Model Settings Vary by Location?	Yes (shear, expansion rate, mixed layer depth)
Uncertainty due to Wake	15% to 20% of loss

Early Wake Studies

- 1985 US Windpower (Kenetech) 56-100
 1.4 x 8 RD, 3 rows, turbines on/off
- Observed significant wake losses ~15 to 25%
- 1989 Howden HWP 330/33 2.0 x 11 RD, 2 rows, turbines on/off, day/night
- Unstable losses insignificant, stable losses
 ~11%
- 1989 Altamont Pass Macro Wake Analysis (Nierenberg), WS deficit analysis

RAM Associates

RECENT WAKE MODEL VERIFICATION

- E.On Deep Array (Wolfe et al 2010)
- MHI 1000A, 5 rows, free-stream WS model (RAMWind & pre-construction met data)
- Modeled WS correlated to unwaked turbine power, used to model free-stream power at waked turbine sites and wake losses
- Wake Models: WindFarmer EV (deep array), WindPro & WAsP Park, RAM
- Overall, models did not underestimate observed losses
 RAM Associates

Current Wake Model Verification Two verification tests underway Wind Farm in Mountainous West Five rows in mountain pass Wind Farm in Great Plains Two rows in open terrain Turbine performance data: 100% availability, power > 0 kW, No curtailment Prevailing, southerly WD

RAM Associates

Methodologies for Terrain FX Normalization

Traditional

- Develop WS Model (WS vs. RW exposures)
- Relationship of freestream Power vs. WS
- Apply relationship to waked turbines based on modeled WS
- Wake FX = % ∆ between modeled freestream & obs. power
 RAM Associates

Resource Assessment & Micrositing

New Approach

- Eliminate the "middle man" no WS model
- Develop Power Model (Free-stream P vs. RW exposures)
- Apply relationship to waked turbines based on exposure
- Wake FX calculation same

Site 1 - Mountain Pass 5 Strings, ~3 RD x ~12 RD, Southerly WD

Free-Stream Turbine Mean Power (14 units) vs. Exposure

RAM Associates

Observed Wake Loss by String

Per-Turbine Wake Loss by String

Site 2 – Great Plains 2 Strings, ~3.25 x ~12 to 19 RD, Southerly

Free-Stream Turbine Mean Power (22 units) vs. Exposure

RAM Associates

Per-Turbine Wake Loss

Conclusions

A new method of analyzing wake losses has been developed

High level of correlation between freestream power and RAMWind exposure
Observed wake losses to be compared to modeled wake losses at both sites

New modeling technique can be used to identify performance anomalies

RAM Associates