Long-term Wind Speed Estimates from Short-term Data: So Many Ways to Get it Wrong!

> Liz Walls Jack Kline Zack Kline AWEA Wind Resource Assessment Workshop Oklahoma City, OK Sept. 14, 2010



# Objectives

- To better understand which parameters most significantly affect the accuracy of long-term wind speed estimates based on surface stations as reference.
- To test the relative accuracy of various MCP (Measure-Correlate-Predict) techniques.

#### RAM Associates

#### **Overview of MCP and Various Techniques**

 MCP (Measure-Correlate-Predict) is a technique used to estimate long-term wind speeds at a project site based on near-by long-term reference data.



#### Overview of MCP and Various Techniques: Ratio of Means and Regression Analyses

- Ratio of Means:
  - Analyzed by wind direction sector
- $\overline{U}_{hist project} = \frac{\overline{U}_{conc project}}{\overline{U}_{conc reference}} \overline{U}_{hist reference}$

- Standard or Orthogonal
- Standard Least Squares:



$$\overline{U}_{hist \ project} = \beta \times \overline{U}_{hist \ reference} + \alpha$$

• Orthogonal Regression:



#### RAM Associates

#### Overview of MCP and Various Techniques: R<sup>2</sup> Adjustment to Regression Analyses

 Predicted project wind speed is adjusted using R<sup>2</sup> (coefficient of determination).

$$\overline{U}_{R^2 A dj} = \overline{U}_{Conc.} \left( 1 + R^2 \left( \frac{\overline{U}_{Lin. Reg. Est.}}{\overline{U}_{Conc. Proj.}} - 1 \right) \right)$$

Mean project wind speed measured during concurrent period

Coefficient of Determination found from linear regression

#### RAM Associates

### Overview of MCP and Various Techniques: Matrix – Lag1

- Create two joint probability distributions:
  - 1. Reference vs. Project wind speeds
  - 2. Project wind speeds vs. Project wind speeds lag 1 hour
- Develop diurnal relationship between reference and project sites
- Using historical reference data, for every hourly data point:
  - Draw random number and use reference project wind speed JPD to determine project wind speed.
  - Draw 2<sup>nd</sup> random number and use project project lag 1 JPD to determine project wind speed.

32

2.8

2.6

24

2.2 2

1.8

16

1.4 1.2

0.8

0.6 0.4

0.2

0

- Combine the two estimated project wind speeds (weighted or unweighted).
- Use observed diurnal relationship to shape final product wind speed estimate.



### Planar or 2x Regression

- Use two reference stations in planar regression.
- Two independent input variables, x and y; solve for two slopes, m and n, and one intercept, b, to predict one output variable, z.

$$z = mx + ny + b$$

#### **RAM** Associates

# **Experimental Set-Up**

- 2 Reference stations:
  - Apache Mesonet
  - Lawton ASOS
- Project site 1015:
  - 50 m met tower equipped with NRG #40 cup anemometer (some DFW correction)
  - Redundant sensors at two upper levels
- Length of concurrent data sets: March 2004 – April 2009
- Valid data recovery = ~99%
- Distance between reference and project sites:
  - Mesonet to Project site = 18 km
  - ASOS to Project site = 29 km



#### RAM Associates

# Methodology

- Conducted MCP analyses using various techniques based on:
  - ASOS and Mesonet as reference
  - 6 months, 1 year and 2 years of concurrent data (with moving concurrent sub-sets in 1- month increments)
- Compared predicted LT wind speed to actual LT (i.e. 5 year) wind speed.
  - Calculated mean absolute error and standard deviation of errors
- Examined the sensitivity of long-term wind estimates to:
  - Correlation coefficient between reference and project sites
  - Deviation of reference wind speed to its mean
  - R<sup>2</sup> adjustment
  - Length of concurrent data set
  - Type of MCP technique

#### RAM Associates

### Sensitivity of Long-term Estimates to Correlation Coefficient

(Orthogonal regression, using daily avg. WS)







#### RAM Associates



- Higher corr. coeffs. lead to a more accurate result when dealing with shorter concurrent data sets.
- With data sets longer than 1 year, higher corr. coeff. had small effect on accuracy.

#### Sensitivity of Long-term Estimates to Correlation Coefficient

- Mean absolute error and standard deviation of the errors decreased for all data lengths.
- R<sub>ASOS</sub> = 0.77; R<sub>MESONET</sub> = 0.94

| Mean Absolute Error |      |         |
|---------------------|------|---------|
|                     | ASOS | Mesonet |
| 6 months            | 3.8% | 2.3%    |
| 1 year              | 1.6% | 1.3%    |
| 2 years             | 0.6% | 0.4%    |

#### **Standard Deviation of Errors**

|          | ASOS | Mesonet |
|----------|------|---------|
| 6 months | 4.8% | 2.9%    |
| 1 year   | 1.9% | 1.5%    |
| 2 years  | 0.5% | 0.3%    |



Standard Deviation of Errors of LT Wind Speed Estimates



#### RAM Associates

#### Sensitivity of Long-term Estimates to Reference Wind Speed



#### RAM Associates

#### Sensitivity of Long-term Estimates to R<sup>2</sup> Adjustments

- Used orthogonal regression with Mesonet reference data and applied R<sup>2</sup> adjustment.
- Results showed no improvement in accuracy when adjustment made.

| Mean Absolute Error |         |                     |
|---------------------|---------|---------------------|
|                     | No Adj. | $\mathbf{R}^2$ Adj. |
| 6 months            | 2.30%   | 2.42%               |
| 1 year              | 1.31%   | 1.32%               |
| 2 years             | 0.43%   | 0.35%               |

#### **Standard Deviation of Errors**

|          | No Adj. | $\mathbf{R}^2$ Adj. |
|----------|---------|---------------------|
| 6 months | 2.87%   | 3.02%               |
| 1 year   | 1.51%   | 1.53%               |
| 2 years  | 0.33%   | 0.33%               |







#### RAM Associates

# How can accuracy worsen when R<sup>2</sup> adjustment is made?



#### RAM Associates

# Sensitivity of Long-term Estimates to MCP technique

- Using 1-year of Mesonet data, conducted MCP methods:
  - Orthogonal regression (daily avg. wind speeds)
  - Orthogonal regression by wind direction sector (hourly)
  - Orthogonal by wind direction and day vs. nighttime (hourly)
  - Matrix Lag1 (hourly)

| MCP Technique     | Mean Abs.<br>Error | Std. Dev.<br>Of Errors |
|-------------------|--------------------|------------------------|
| Orthogonal        | 1.31%              | 1.51%                  |
| Orthogonal by dir | 1.28%              | 1.40%                  |
| Orthogonal by dir |                    |                        |
| + day vs. night   | 1.37%              | 1.47%                  |
| Matrix - Lag1     | 1.39%              | 1.59%                  |







#### RAM Associates

# Planar or 2x Regression

- Use both reference sites to predict the project site wind speeds.
- Conducted analysis using 14 – 6-month long data sub-sets
- Mean absolute error and standard deviation of errors decreased when planar regression was used.

| MCP       | Mean Abs. | Std. Dev. Of |
|-----------|-----------|--------------|
| Technique | Error     | Errors       |
| ASOS      | 4.13%     | 5.15%        |
| Mesonet   | 2.87%     | 3.46%        |
| Planar    | 2.61%     | 3.12%        |





#### RAM Associates

# Is MCP always necessary/appropriate with 2-years of project site data?

- Compared moving 2 year average wind speeds and long-term MCP estimate (based on orthogonal regression) to actual longterm value.
- When reference mean deviates more than ~2% from long-term mean, the % error exceeds +/- 1%.



#### RAM Associates

#### Error and Uncertainty associated with using 5-year data set as Long-term

0.0%

1

- Compared reference site variability to its 15 year long-term average.
- Mean absolute error of 0.5% associated with 5-year long-term data set.

| Reference   | Mean Abs. | Std. Dev. Of |
|-------------|-----------|--------------|
| Data Length | Error     | Errors       |
| 1 year      | 2.9%      | 3.6%         |
| 2 years     | 1.3%      | 1.8%         |
| 3 years     | 0.9%      | 1.1%         |
| 5 years     | 0.5%      | 0.7%         |
| 8 years     | 0.4%      | 0.4%         |



Length of Reference Data, years

3

5

8

2

#### RAM Associates

#### Variations in Relationship of Wind Speed Distribution

- Why is it so difficult to accurately estimate long-term wind speed?
  - The relationship between the reference and project site cannot be assumed to be constant!
- Looked at two 1-year periods at the reference site for which mean speeds were approximately equal to long-term mean.



# **Observations and Recap**

- Strength of correlation has a more significant impact on long-term wind speed estimate error for shorter data periods than for longer ones.
- No obvious relationship between % error in long-term estimate and % deviation from reference wind speed.
- Adjusting estimate based on R<sup>2</sup> reduces error under certain circumstances and increases it in others.
- MCP technique had small effect on error of wind speed estimate.
- Planar regression showed small improvement in accuracy of estimate based on short-term data periods.
- Length of data set had most significant impact on error of estimate.
- If project data length is 2 years, MCP may not be necessary if reference average is within ~2% of long-term mean.
- Relationship between reference and project site changes and cannot be assumed to be constant. Since consistency is an implicit assumption of MCP, errors are inevitable!

#### RAM Associates

## Future Work

- Chaos theory, strange attractors
- Wind shear extrapolation adds even more uncertainty

#### RAM Associates