#### Wind Flow Modeling Software Comparison

John Vanden Bosche Chinook Wind

AWEA Wind Resource Assessment Workshop Minneapolis, MN September 30, 2009





#### Issues With Wind Flow Modeling

- •Impractical to measure the wind at the location of each wind turbine, so *some* model is necessary
- •Conceptual flow models were used historically – relied heavily on the analyst's skill
- •WAsP became a de-facto industry standard over the past 10 to 15 years
- •WAsP is a linear model that is not ideal. Can we do better?





#### New Models are Emerging

- •CFD models
- •Meso-scale models
- •Combinations of various models
- •We investigated WAsP, MS-Micro, WindSim, and Jack Kline's terrain based model





#### Methodology

•Compared models at two sites with different terrain and climate characteristics

•Utilized ONLY concurrent wind data at a consistent height in the comparison

•Eliminated potential bias from MCP or wind shear adjustments

•Utilized "best practices" for use of each software

•Jack Kline modeled the sites for us – we provided data and he provided results





#### Sites

- Test sites provided courtesy of Ridgeline Energy
- Intermountain western US
- Both have moderately complex terrain
- Atmospheric stability is important in wind flow

Chinook Wind

• Site names and average wind speeds have been obscured to ensure confidentiality









### WAsP



- Oldest model considered
- Linear flow model
- Industry standard
- Well known





## MS Micro 3 >WindFarm

- Part of optimization software 'WindFarm'
- Linear flow model
- Very fast calculations
- Low cost \$\$\$
- Effective tutorials





## WindSim windsim

- CFD
- Combines results from multiple met towers
- Visual error results
- Exportable 3D data
- Possible to investigate convergence





### Jack Kline's Model

- Empirical model presented at the 2007 WRA workshop
- Utilizes proprietary upwind and downwind exposure indices
- Measured wind speeds are regressed with exposure indices and elevation
- Regression results can be used to predict wind speeds at other met tower locations (or turbine locations)

Chinook Wind



### **Results Comparison**

- Combined results from multiple initialization met towers for WAsP and MS-Micro to create a composite wind flow grid
- WindSim treats multiple met towers simulteously
- Leave 1 met tower out from composite grid
- Compare predicted result for "left out" tower to measured wind at that tower





#### Results Table – Site 1

| Met Tower | Jack Kline | MS Micro | WindSim | WAsP  |
|-----------|------------|----------|---------|-------|
| 1         | 0.1%       | 1.6%     | -7.1%   | -4.5% |
| 2         | 0.0%       | 0.9%     | 1.3%    | -3.7% |
| 3         | -1.8%      | 6.3%     | -3.4%   | -2.4% |
| 4         | -0.6%      | -5.1%    | 2.1%    | 2.2%  |
| 5         | 1.9%       | -1.8%    | 3.2%    | 3.6%  |
| 6         | -0.5%      | 3.6%     | 3.0%    | -0.9% |
| RMS Error | 1.1%       | 3.8%     | 3.8%    | 3.1%  |
| Bias      | -0.6%      | 2.9%     | -3.1%   | -3.5% |





#### Results Table – Site 2

| Met Tower | Jack Kline | MS Micro | WindSim | WAsP  |
|-----------|------------|----------|---------|-------|
| 1         | -1.8%      | 0.8%     | -2.9%   | 3.3%  |
| 2         | 1.4%       | 3.2%     | 5.3%    | 1.2%  |
| 3         | -2.2%      | -2.1%    | -8.9%   | 1.4%  |
| 4         | -1.8%      | 1.4%     | 4.6%    | -4.7% |
| 5         | 1.5%       | -2.5%    | 3.7%    | 2.3%  |
| RMS Error | 1.8%       | 2.2%     | 5.5%    | 2.9%  |
| Bias      | -0.6%      | 0.2%     | 0.4%    | 0.7%  |

Chinook Wind



#### What does error correlate to?

- Tells us something about how the models work
- We may be able to apply correction factors
- To examine error correlation, we re-ran the models with 1 tower predicting all other towers the opposite of "leave one out"
- Compare error to distance, elevation change, upwind and downwind exposure change, and RIX
  Chinook Wind

#### Is error correlated to distance?



# Is error correlated to elevation change?



# Is error correlated to upwind exposure?



NERGY

# Is error correlated to downwind exposure?



#### Is error correlated to delta RIX?



NERG

#### What Do the Results Mean?

- The commercially available software performs reasonably well, but there is a possibility to have big errors
- Care is needed in designing a measurement campaign
- More met towers are better, in a wide variety of terrain
- Jack is onto something with his exposurebased model!





#### Acknowledgements

- Thanks to Ridgeline Energy for access to their sites and data
- Thanks to Nathaniel Vandal, Mike Burghart, and Regina Sweet for help with help with processing data and running models
- Thanks to Jack Kline for modeling the sites
- Thanks to Arne Gravdahl at WindSim for his excellent technical support