Field Comparison of Maximum Cup, Climatronics F460 and Met One 010C Anemometers

Jack Kline Ram Associates Amir Mikhail Enron Wind Corp.

WindPower '99 June 22, 1999 Burlington, VT USA

Compare Concurrent Wind Speeds

- New, calibrated sensors
 - Wind Tunnels, Otech (rig on automobile)
- Project site in Altamont Pass
- Common crossarm, common logger (CS 21x)
- Collect 10-minute averages & std. dev.
- Maximum Cup with and without boot
 - Measure three ways calibrated, consensus and EWC transfer functions
- Climatronics used as reference

Data Analysis / Comparisons

- Gross averages wind speed ratios
- Speed ratios as function of wind speed
- Theoretical energy calculation 750 kW turbine
- Turbulence Intensity
- Boot on / boot off
- Implications of results

June 22, 1999

RAM Associates

Maximum Cup Linear Transfer Functions

	<u> </u>	pe	<u>Offset</u>	
<u>Source</u>	<u>m/s/Hz</u>	(mph/Hz)	m/s_	<u>(mph)</u>
Calibration	0.7595	(1.6990)	0.516	(1.154)
Consensus	0.7649	(1.7110)	0.349	(0.780)
EWC	0.7577	(1.6949)	0.000	(0.000)

June 22, 1999

RAM Associates

Average Wind Speeds and Ratios to Climatronics - w/ boot - 1393 records

	<u>Clim</u>	Met1	<u>MaxCal</u>	<u>MaxCons</u>	MaxEWC
m/s	9.00	9.07	9.36	9.26	8.83
mph	(20.13)	(20.28)	(20.94)	(20.71)	(19.74)
Ratio to Clim	1.000	1.007	1.040	1.029	0.981

June 22, 1999

RAM Associates

Theoretical Energy Calculation and Ratios to Climatronics 750 kW Power Curve - with boot

	<u> </u>	<u>Met1</u>	<u>MaxCal</u>	<u>MaxCons</u>	MaxEWC
kWh	74,131	75,368	80,468	78,717	71,396
Ratio	1.000	1.017	1.085	1.062	0.963

June 22, 1999

RAM Associates

Turbulence Intensity vs Average Wind Speed Maximum Cup with boot

Average Wind Speeds and Ratios to Climatronics - no boot - 1153 records

<u>_C</u>	<u>lim Me</u>	<u>t1 MaxCa</u>	<u>al MaxCon</u>	<u>s</u> <u>MaxEWC</u>
m/s 9.	.59 9.6	3 9.7	9 9.69	9.25
mph (21	.45) (21.5	53) (21.9	90) (21.67) (20.69)
Ratio to Clim 1.0	000 1.00	94 1.02	1.010	0.965
Booted Ratio 1.0	000 1.00	07 1.04	0 1.029	0.981

June 22, 1999

RAM Associates

Theoretical Energy Calculation and Ratios to Climatronics 750 kW Power Curve - without boot

-	Clim	Met1	<u>MaxCal</u>	<u>MaxCons</u>	<u>MaxEWC</u>
kWh ⁻	72,068	72,543	74,702	73,559	68,637
Ratio	1.000	1.007	1.037	1.021	0.952
Ratio w/ boot	1.000	1.017	1.085	1.062	0.963

June 22, 1999

RAM Associates

Average Wind Speed Ratios to Climatronics Maximum Cup without Boot

Ratio of Max Cup Hz to Clim Hz vs Clim WS Maximum Cup with and without boot

Ratio of Max Cup Hz to Clim Hz vs Clim WS Maximum Cup with and without boot

Correction to Maximum Cup Wind Speeds to Simulate Climatronics

- Third-order polynomial for $Hz \le 10.3$
- Linear transfer function for $Hz \ge 10.3$
- Coefficients, slopes and offsets developed for booted and non-booted sensors.
- Post-processing or used during data logging.
- Tested with used Maximum Cup.
- Field test error ~1%.

June 22, 1999

Normalized Smoothed Average Ratios of New Max Hz and Old Max Hz / Clim Hz vs Clim WS

Default Slopes and Offsets in NRG and Second Wind Data Loggers

	Slc	pe	Offset		
	m/s/Hz	mph/Hz	m/s	mph	
NRG	0.7637	(1.708)	0.000	(0.000)	
NOMAD 1	0.7617	(1.704)	0.000	(0.000)	
NOMAD 2	0.7689	(1.720)	0.402	(0.900)	
NOMAD 3	0.7734	(1.730)	0.483	(1.080)	

June 22, 1999

RAM Associates

Percent Deviation of Average WS from Simulated Climatronics

Percent Deviation of Annual Energy from Simulated Climatronics

June 22, 1999

RAM Associates

Conclusions

- Free-atmosphere comparison revealed unexpected subtleties in anemometer performance, probably not observed in wind tunnel.
- Climatronics and Met One compared well.
- Maximum Cups showed non-linear performance degradation in wind speeds < ~8 m/s.
- Boot causes Maximum Cup to spin faster.
- Ti is the same for all sensors at WS > ~9 m/s
 - Significant errors in wind speed and theoretical energy possible with Maximum Cups.

RAM Associates

Recommendations

- Comparative testing of other ball bearing anemometers and Maximum Cups.
- Side-by-side comparison of different sensors to be used for different purposes or...
- Consistent use of the same type of anemometer (\$\$\$).
- Consider correcting wind speed data from Maximum Cups.
- Carefully consider whether to use Maximum Cups for power curve testing.

June 22, 1999

Average Ratios to Climatronics Maximum Cup with boot

June 22, 1999